Advanced Technologies Facilitating DRR and Climate Change Adaptation (Session 3)

Manzul Kumar Hazarika, Ph.D.

Director, Geoinformatics Center Asian Institute of Technology (AIT), Thailand manzul@ait.asia

Contents

- Introduction to Session 3
- New Technologies
 - ✓ Applications of UAVs for disaster management
 - ✓ Other New Technologies Floating House and Cars
 - Crowdsourcing Geographic Information for Disaster Response
 - ✓ Drought Monitoring Using Satellite Data

What is a UAV?

UAV is a relatively small size remote controlled or automatic pilotless aircraft.

 Image acquisition on demand Cheap and cost effective High spatial-resolution Relatively small coverage Care required to use in populated areas Chances of misuse due to easy 	Advantages	Disadvantages	
 High accuracy Easier to deploy No hindrances from clouds Drone regulations can restrict usage 	 Image acquisition on demand Cheap and cost effective High spatial-resolution High accuracy Easier to deploy No hindrances from clouds 	 Relatively small coverage Care required to use in populated areas Chances of misuse due to easy Drone regulations can restrict usage 	

Our Own Custom Built UAVs

Fixed-Wing

Testing

Applications of UAVs in Disaster Management

Area

Applications

Disaster Management

Pre-disaster

• Risk assessment

During a disaster

- Providing relief materials
- Damage mapping

Risk Assessment

Landuse Map and Elevations (for Hazard Analysis)

Elements-at Risk Mapping (for Exposure Assessment)

Quantitative (Absolute) Risk Assessment

What is the cost for risk zoning and relocation? What is the insurance premium in different risk zones?

Risk = Hazard	x Vulnerability	x Amount (Asset)	
Risk _{Lt} = 0.1	x 0.5	x 100,000	= 5,000 US\$
Risk _{Mid} = 0.1	x 1.0	x 100,000	= 10,000 US\$
Risk _{Rt} = 0.1	x 0.2	x 100,000	= 2,000 US\$
Risk _{Total}			= 17,000 US\$

Disaster Risk Maps (City Level)

An Edible and Disposable UAV for Relief called Pouncer (During a Disaster)

Challenges

- Relief aids dropped over disaster or war zones from planes using parachutes **lack precisions** in delivery;
- A plane can para-drop food packet only fro 5-6 km above;

Solution

- A plane will be able to drop the Pouncer 35 km away from its targets with an accuracy up to 7 m;
- Wing span will be approx. 3 m and the self-flying and fast, and carry up to **50 kg** of food, fuel and water to cook;
- A fully loaded version could feed up to **50 people** for a day at a cost approx. 300 USD each;
- 70 drones could be stored and released in a C-130 aircraft at once bringing aid to up to **3,500 people**.

http://www.zdnet.com/article/this-edible-food-drone-could-offer-aid-in-disaster-zones/

Mapping the Extent of Disasters (Post-disaster)

Other New Technologies

Floating Houses in the Netherlands

A Floating House in a Developing Country

A Floating Car

- An electric car which can **float and move** on water in case of flooding;
- Unveiled in February this year, is capable of floating like a boat and can operate for about **24 hours**;
- World's smallest four-seat electric car, measures 2.5 meters in length and weighs only 460 kilograms;
- Production and sales of the vehicle will start in **Thailand** in October next year.

http://fomm.co.jp/wordpress/index_en.html

Crowdsourcing Information for Disaster Response

Web-GIS Platform for Sri Lanka Flood (May 2017)

Flood Image Acquired by Satellites

Flood Photo Around Colombo City

Affected, Dead, Missing People and Damage

https://www.youtube.com/watch?v=MgK4qcnMQ3k&t=7m20s&authuser=0https://www.youtube.com/watch?v=Cf7Gafe_jpw&t=7m&authuse

Drought Monitoring

Meteorological droughts (everyday in 4km)
GSMaP1

MTSAT KBDI (rainfall + land surface temperature)

Agricultural droughts (16days in 250m)

MODIS NDVI (vegetation index)

MODIS LAI (leaf area index)

Hydrological droughts (everyday in 10km)

AMSR-E LSWC (land surface water coverage)

If we have a prediction of the above indices based on weather forecasting, it is called a potential drought.

Monthly drought index map from 2007 to 2012 (Jan-Dec from left to right)

Courtesy: Takeuchi W. (Univ. of Tokyo)

dry

Thank you for your kind attention